# Collective phenomenon in small systems at LHC energies





Zhoudunming Tu (Kong) 涂周顿明 Rice University, USA 10/05/2015

#### "Ridge" observed in all systems



#### "Ridge" observed in all systems



#### What can "ridge" tell us in small systems?

#### "Ridge" observed in all systems



#### What can "ridge" tell us in small systems?

Collectivity?

Hydro. flow? CGC?

QGP in small systems?

#### Can energy makes a difference on "ridge"?





#### Can energy makes a difference on "ridge"?



p\_ (GeV/c)

100 N<sup>offline</sup> trk

#### CMS detectors





#### It looks HUGE!!!

#### **CMS** detectors



#### High precision tracking system + large acceptance!



 $v_2$ {2} >  $v_2$ {4} ≈  $v_2$ {6} ≈  $v_2$ {8} ≈  $v_2$ {LYZ, ∞} Hydro. prediction



 $v_2$ {2} >  $v_2$ {4} ≈  $v_2$ {6} ≈  $v_2$ {8} ≈  $v_2$ {LYZ, ∞} Hydro. prediction





What about high  $p_T$  ? different  $\eta$  ?

What about high  $p_T$ ?  $v_2{2} > v_2{4} \approx v_2{6} \approx v_2{8} \approx v_2{LYZ, \infty}$  Hydro. prediction different  $\eta$ ?

What about high  $p_T$ ?  $v_2\{2\} > v_2\{4\} \approx v_2\{6\} \approx v_2\{8\} \approx v_2\{LYZ, \infty\}$  Hydro. prediction different  $\eta$ ?



#### What about high $p_T$ ? $v_2\{2\} > v_2\{4\} \approx v_2\{6\} \approx v_2\{8\} \approx v_2\{LYZ, \infty\}$ Hydro. prediction

different  $\eta$  ?



#### Collectivity extends to a wide range of **p**<sub>T</sub>

## What about high $p_T$ ? $v_2\{2\} > v_2\{4\} \approx v_2\{6\} \approx v_2\{8\} \approx v_2\{LYZ, \infty\}$ Hydro. prediction different $\eta$ ?



Collectivity extends to a wide range of **pseudorapidity** 

# If there is collectivity in small systems, like pA

## can this be Hydro. flow?

#### Collective "flow" in pA and pp



#### Collective "flow" in pA and pp



#### Collective "flow" in pA and pp



If there is "radial flow", how pp, pA vs AA?
How about v2 measurement in pp?

#### Particle identification



#### PID spectra in pPb



#### **Described better by model with flow effect**



#### PID spectra in pPb



EPJC 74 (2014) 2847

#### PID spectra in pPb



EPJC 74 (2014) 2847

PID spectra in pPb



EPJC 74 (2014) 2847

PID spectra in pPb



#### Indication of multiplicity dependence of radial flow in pPb

#### PID spectra in pp



#### Clear spectra evolution from different multiplicities







Difference in baryon/meson ratio increases as the system becomes smaller!

Caused by colliding energies? Or there is stronger "radial flow" in smaller systems?



Stronger radial flow in pp, pPb than PbPb ?

#### PID spectra 3 systems comparison



#### PID spectra 3 systems comparison



 $<\beta_{T}>(pp) > <\beta_{T}>(pPb) > <\beta_{T}>(pPb)$ 

Values are model dependent, but good for system size comparisons

#### PID spectra 3 systems comparison



Values are model dependent, but good for system size comparisons



#### Rapidity dependence in pPb



#### Rapidity dependence in pPb



#### Rapidity dependence in pPb









1) Jet correlation correction has been applied, and works well in MC

2) Positive  $v3\Delta$  has been observed!

HIN-15-009

Exciting results from QM15

 $\odot \text{ pPb } \sqrt{\text{s}_{\text{NN}}} = 5.02 \text{ TeV}$ **CMS** Preliminary □ PbPb √s<sub>NN</sub> = 2.76 TeV 0.10 v2 and v3 increase with  $|\Delta \eta| > 2$ v<sup>sub</sup>{2} multiplicity in all systems 000000 0.05 v3 at high multiplicities seem pp  $\sqrt{s} = 7$  TeV, no sub. • pp  $\sqrt{s} = 7$  TeV to deviate from pPb and  $0.3 < p_{-} < 3 \text{ GeV/c}$ **PbPb** values 0.03 6 6 6 6  $|\Delta \eta| > 2$ (L) Provide crucial constraints on 0.02 \vee{2} G proton shape (substructure) NEW! 0.01  $0.3 < p_{_{T}} < 3 \text{ GeV/c}$ 100 200 300 0  $N_{trk}^{offline}$ 



## Mass ordering effect has been observed again!

NCQ still holds?



Not conclusive,

but interesting outlook!

#### Is hydrodynamics true universally?

#### Is hydrodynamics true universally?







